COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products.

UNLABELLED: The biological activity of cruciferous vegetables is hypothesized to be due to the metabolites of a class of phytochemicals called glucosinolates. The chemical properties of these metabolites, including isothiocyanates, determine the biological activity of these compounds and thus their effects on human health. The 2 primary radish (Raphanus sativus L.) glucosinolates, glucoraphasatin, and glucoraphenin, were isolated using solid phase extraction followed by preparative HPLC purification. In an aqueous environment, 77.6% of the maximum amount of sulforaphene produced by the metabolism of glucoraphenin was present after 24 h. Under the same conditions raphasatin, the isothiocyanate metabolite of glucoraphasatin and the oxidized counterpart of sulforaphene, was highly unstable with a half-life of less than 30 min and no raphasatin was detectable after 24 h. In HepG2 cells, raphasatin-induced quinone reductase activity and the RNA expression of several phase 1 and 2 detoxification enzymes by a significantly greater amount than the degradation products of raphasatin. Raphasatin, but not its degradation products, activated the antioxidant response element (ARE) in a stably-transfected reporter cell line. Mice fed a diet consisting of 20% freeze dried radishes for 2 wk had significantly higher liver expression of cytochrome P450 (CYP) 1A1, 1A2, quinone reductase, microsomal epoxide hydrolase, and glutathione S-transferase α2 than mice fed a nutritionally-matched control diet.

PRACTICAL APPLICATION:   Glucoraphasatin, the primary glucosinolate in radishes, is metabolized into an isothiocyanate (raphasatin) that has biological activity but is also unstable in an aqueous environment. Despite the instability of raphasatin, dietary exposure to radishes produced significant induction of detoxification enzymes. Understanding the chemical properties of raphasatin, both in terms of biological activity and instability, could help develop processing methods to retain the most activity from radishes, glucoraphasatin, and raphasatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app