JOURNAL ARTICLE

Quantum plexcitonics: strongly interacting plasmons and excitons

A Manjavacas, F J García de Abajo, P Nordlander
Nano Letters 2011 June 8, 11 (6): 2318-23
21534592
We present a fully quantum mechanical approach to describe the coupling between plasmons and excitonic systems such as molecules or quantum dots. The formalism relies on Zubarev's Green functions, which allow us to go beyond the perturbative regime within the internal evolution of a plasmonic nanostructure and to fully account for quantum aspects of the optical response and Fano resonances in plasmon-excition (plexcitonic) systems. We illustrate this method with two examples consisting of an exciton-supporting quantum emitter placed either in the vicinity of a single metal nanoparticle or in the gap of a nanoparticle dimer. The optical absorption of the combined emitter-dimer structure is shown to undergo dramatic changes when the emitter excitation level is tuned across the gap-plasmon resonance. Our work opens a new avenue to deal with strongly interacting plasmon-excition hybrid systems.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21534592
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"