JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of different spacer arms on Mimetic Ligand™ A2P and B14 membranes for human IgG purification.

Microporous membranes are an attractive alternative to circumvent the typical drawbacks associated to bead-based chromatography. In particular, the present work intends to evaluate different affinity membranes for antibody capture, to be used as an alternative to Protein A resins. To this aim, two Mimetic Ligands™ A2P and B14, were coupled onto different epoxide and azide group activated membrane supports using different spacer arms and immobilization chemistries. The spacer chemistries investigated were 1,2-diaminoethane (2LP), 3,6-dioxa-1,8-octanedithiol (DES) and [1,2,3] triazole (TRZ). These new mimetic membrane materials were investigated by static and by dynamic binding capacity studies, using pure polyclonal human immunoglobulin G (IgG) solutions as well as a real cell culture supernatant containing monoclonal IgG(1). The best results were obtained by combining the new B14 ligand with a TRZ-spacer and an improved Epoxy 2 membrane support material. The new B14-TRZ-Epoxy 2 membrane adsorbent provided binding capacities of approximately 3.1mg/mL, besides (i) a good selectivity towards IgG, (ii) high IgG recoveries of above 90%, (iii) a high Pluronic-F68 tolerance and (iv) no B14-ligand leakage under harsh cleaning-in-place conditions (0.6M sodium hydroxide). Furthermore, foreseeable improvements in binding capacity will promote the implementation of membrane adsorbers in antibody manufacturing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app