JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Wnt5a: its signalling, functions and implication in diseases.

Acta Physiologica 2012 January
Wnt5a is a representative ligand that activates the β-catenin-independent pathways. Because the β-catenin-independent pathway includes multiple signalling cascades in addition to the planar cell polarity and Ca(2+) pathway, Wnt5a regulates a variety of cellular functions, such as proliferation, differentiation, migration, adhesion and polarity. Consistent with the multiple functions of Wnt5a signalling, Wnt5a knockout mice show various phenotypes, including an inability to extend the embryonic anterior-posterior and proximal-distal axes in outgrowth tissues. Thus, many important roles of Wnt5a in developmental processes have been demonstrated. Moreover, recent reports suggest that the postnatal abnormalities in the Wnt5a signalling are involved in various diseases, such as cancer, inflammatory diseases and metabolic disorders. Therefore, Wnt5a and its signalling pathways could be important targets for the diagnosis and therapy for human diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app