JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Altering sexual reproductive mode by interspecific exchange of MAT loci.

Sexual fungi can be self-sterile (heterothallic, requiring genetically distinct partners) or self-fertile (homothallic, no partner required). In most ascomycetes, a single mating type locus (MAT) controls the ability to reproduce sexually. In the genus Cochliobolus, all heterothallic species have either MAT1-1 or MAT1-2 (but never both) in different individuals whereas all homothallic species carry both MAT1-1 and MAT1-2 in the same nucleus of an individual. It has been demonstrated, previously, that a MAT gene from homothallic Cochliobolus luttrellii can confer self-mating ability on a mat-deleted strain of its heterothallic relative, Cochliobolus heterostrophus. In this reciprocal study, we expressed, separately, the heterothallic C. heterostrophus MAT1-1-1 and MAT1-2-1 genes in a mat-deleted homothallic C. luttrellii strain and asked if this converts homothallic C. luttrellii to heterothallism. We report that: (1) A C. luttrellii transgenic strain carrying C. heterostrophus MAT1-1-1 and a C. luttrellii transgenic strain carrying C. heterostrophus MAT1-2-1 can mate in a heterothallic manner and the fertility of the cross is similar to that of a wild type C. luttrellii self. Full tetrads are always found. (2) A C. luttrellii transgenic strain carrying C. heterostrophus MAT1-1-1 can mate with the parental wild type C. luttrellii MAT1-1;MAT1-2 strain, indicating the latter is able to outcross, a result which was expected but has not been demonstrated previously. (3) A C. luttrellii transgenic strain carrying C. heterostrophus MAT1-2-1 cannot mate with the parental wild type C. luttrellii MAT1-1;MAT1-2 strain, indicating outcrossing specificity. (4) Each transgenic C. luttrellii strain, carrying only a single C. heterostrophus MAT gene, is able to self, although all pseudothecia produced are smaller than those of wild type and fertility is low (about 4-15% of the number of wild type asci). These data support the argument that in Cochliobolus spp., the primary determinant of reproductive mode is MAT itself, and that a heterothallic strain can be made homothallic or a homothallic strain can be made heterothallic by exchange of MAT genes. The selfing ability of transgenic C. luttrellii strains also suggests that both MAT1-1-1 and MAT1-2-1 genes of C. heterostrophus carry equivalent transcription regulatory activities, each capable of promoting sexual development when alone, in a suitable genetic background.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app