JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles.

Biomaterials 2011 July
Two types of magnetic binary nanocomposites, Ag@Fe(3)O(4) and γ-Fe(2)O(3)@Ag, were synthesized and characterized and their antibacterial activities were tested. As a magnetic component, Fe(3)O(4) (magnetite) nanoparticles with an average size of about 70 nm and monodisperse γ-Fe(2)O(3) (maghemite) nanoparticles with an average size of 5 nm were used. Nanocomposites were prepared via in situ chemical reduction of silver ions by maltose in the presence of particular magnetic phase and molecules of polyacrylate serving as a spacer among iron oxide and silver nanoparticles. In the case of the Ag@Fe(3)O(4) nanocomposite, silver nanoparticles, caught at the surfaces of Fe(3)O(4) nanocrystals, were around 5 nm in a size. On the contrary, in the case of the γ-Fe(2)O(3)@Ag nanocomposite, ultrafine γ-Fe(2)O(3) nanoparticles surrounded silver nanoparticles ranging in a size between 20 and 40 nm. In addition, the molecules of polyacrylate in this nanocomposite type suppress considerably interparticle magnetic interactions as proved by magnetization measurements. Both synthesized nanocomposites exhibited very significant antibacterial and antifungal activities against ten tested bacterial strains (minimum inhibition concentrations (MIC) from 15.6 mg/L to 125 mg/L) and four candida species (MIC from 1.9 mg/L to 31.3 mg/L). Moreover, acute nanocomposite cytotoxicity against mice embryonal fibroblasts was observed at concentrations of higher than 430 mg/L (Ag@Fe(3)O(4)) and 292 mg/L (γ-Fe(2)O(3)@Ag). With respect to the non-cytotoxic nature of the polyacrylate linker, both kinds of silver nanocomposites are well applicable for a targeted magnetic delivery of silver nanoparticles in medicinal and disinfection applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app