Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A novel monocarbonyl analogue of curcumin, (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway.

Endoplasmic reticulum (ER) stress-induced cancer cell apoptosis has become a novel signaling target for development of cancer therapeutic drugs. Curcumin exhibits growth-suppressive activity against a variety of cancer cells. We previously synthesized a series of monocarbonyl analogues of curcumin with strong cytotoxicity against tumor cells. In this study, we found that only compound 19 [(1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one] can induce C/EBP-homologous protein (CHOP) expression in human lung cancer H460 cells. Treatment with 19 induced H460 cell apoptosis in a dose-responsive manner, and this effect was associated with corresponding increases in a series of key components in ER stress-mediated apoptosis pathway, followed by caspase cleavage and activation. However, curcumin at the same concentrations does not display such properties. CHOP knockdown by specific siRNA attenuated 19-induced cell apoptosis, further indicating that the apoptotic pathway is ER stress-dependent. In vivo, 19 showed a dramatic 53.5% reduction in H460 xenograft tumor size after 22 days of treatment. Taken together, these mechanistic insights on the novel compound 19, with nontoxicity, may provide us with a novel anticancer candidate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app