JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes.

Hyperglycemia is well-recognized and has long-term complications in diabetes mellitus and diabetic nephropathy. In podocytes, the main component of the glomerular barrier, overproduction of reactive oxygen species (ROS) in the presence of high glucose induces dysfunction and increases excretion of albumin in urine. This suggests an impaired antioxidant defense system has a role in the pathogenesis of diabetic nephropathy. We studied expression of NAD(P)H oxidase subunits by Western blotting and immunofluorescence and the activities of the oxidant enzyme, NAD(P)H, and antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), in mouse podocytes cultured in a high glucose concentration (30  mM). We found long-term (3 and 5 days) exposure of mouse podocytes to high glucose concentrations caused oxidative stress, as evidenced by increased expression of Nox4 and activities of NAD(P)H oxidase (Δ 182%) and SOD (Δ 39%) and decreased activities of GPx (Δ -40%) and CAT (Δ -35%). These biochemical changes were accompanied by a rise in intracellular ROS production and accumulation of hydrogen peroxide in extracellular space. The role of Nox4 in ROS generation was confirmed with Nox4 siRNA. In conclusion, high glucose concentration affects the oxidant-antioxidant balance in mouse podocytes, resulting in enhanced generation of superoxide anions and its attenuated metabolism. These observations suggest free radicals may play an important role in the pathogenesis of diabetic nephropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app