Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer.

Based on the self-polymerization and strong adhesion characteristics of dopamine in aqueous solution, a novel and convenient approach was developed to immobilize protein onto porous polyethylene (PE) membranes. A thin polydopamine (pDA) layer was formed and tightly coated onto PE membrane by dipping simply the membrane into dopamine aqueous solution for a period of time. Subsequently, bovine serum albumin (BSA) was bound onto the obtained PE/pDA composite membranes via the coupling between BSA and the reactive polydopamine layer. The firm immobilization of polydopamine layer and BSA was verified by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The results of water contact angle measurement showed that the hydrophilicity of PE membrane was significantly improved after coating polydopamine and binding BSA. The experiments of blood platelet adhesion indicated that BSA-immobilized PE membrane had better blood compatibility than the unmodified PE and the PE/pDA composite membranes. The investigations on hepatocyte cultures and cell viability revealed that the polydopamine coating endowed PE membrane with significantly improved cell compatibility. Compared to BSA surface, polydopamine surface is more favorable for cell adhesion, growth, and proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app