JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin.

Many studies demonstrate that the type of adjacent mesenchymal cells can affect epidermal morphogenesis of bilayered tissue-engineered skin. However, whether a mixture of different mesenchymal cell types can improve epidermal morphogenesis of bioengineered skin remains unknown. In this study, keratinocytes, dermal fibroblasts and adipose tissue-derived stem cells (ADSCs) were isolated and purified from human skin and subcutaneous fat. Conditioned medium generated from a mixture of dermal fibroblasts and ADSCs at the ratio of 1:1 was superior to that from fibroblasts or ADSCs alone in promoting keratinocyte proliferation, as indicated by MTT assay. Furthermore, ELISA results showed that the cytokine levels of human hepatocyte growth factor and keratinocyte growth factor (also known as FGF7) in the mixed fibroblasts/ADSC group were higher than those in the ADSC or dermal fibroblasts group. To examine the potential roles of mixed fibroblasts and ADSCs on epidermal morphogenesis, a three-dimensional tissue engineered skin system was applied. Histological analyses demonstrated that keratinocytes proliferated extensively over the mixture of fibroblasts and ADSCs, and formed a thick epidermal layer with well-differentiated structures. Keratin 10 (epidermal differentiation marker) was expressed in the suprabasal layer of bilayered tissue-engineered skin in the mixed fibroblasts and ADSCs group. Desmosomes and hemidesmosomes were detected in the newly formed epidermis by transmission electron microscopy analysis. Together, these findings revealed for the first time that a mixture of fibroblasts and ADSCs in bilayered tissue-engineered skin can improve epidermal morphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app