JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

WF-MSB: a weighted fuzzy-based biclustering method for gene expression data.

Biclustering is an important analysis method on gene expression data for finding a subset of genes sharing compatible expression patterns. Although some biclustering algorithms have been proposed, few provided a query-driven approach for biologists to search the biclusters, which contain a certain gene of interest. In this paper, we proposed a generalised fuzzy-based approach, namely Weighted Fuzzy-based Maximum Similarity Biclustering (WF-MSB), for extracting a query-driven bicluster based on the user-defined reference gene. A fuzzy-based similarity measurement and condition weighting approach are used to extract significant biclusters in expression levels. Both of the most similar bicluster and the most dissimilar bicluster to the reference gene are discovered by WF-MSB. The proposed WF-MSB method was evaluated in comparison with MSBE on a real yeast microarray data and synthetic data sets. The experimental results show that WF-MSB can effectively find the biclusters with significant GO-based functional meanings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app