JOURNAL ARTICLE

Ghrelin suppresses tunicamycin- or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells

Hyunju Chung, Ho-Yeon Chung, Chong Woo Bae, Chong-Jin Kim, Seungjoon Park
Endocrine Journal 2011, 58 (5): 409-20
21490406
Ghrelin functions as a neuroprotective agent and rescues neurons from various insults. However, the molecular mechanisms underlying ghrelin neuroprotection remains to be elucidated. An accumulation of unfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and then induces ER stress-mediated cell death. Here, we report that acylated ghrelin inhibited tunicamycin- or thapsigargin-triggered ER stress-induced apoptotic cell death in primary rat cortical neurons. An analysis using a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), LY294002, showed that ghrelin prevented apoptosis via the activation of PI3K signaling pathway. Ghrelin suppressed tunicamycin- or thapsigargin-induced upregulation and nuclear translocation of C/EBP homologous protein (CHOP). Ghrelin also inhibited tunicamycin or thapsigargin induction of PRK-like ER kinase (PERK), eukaryotic translation initiation factor-2α (eIF2α) and activating transcription factor (ATF) 4. Exposure of cells to tunicamycin or thapsigargin resulted in nuclear translocation of forkhead box protein O1 (Foxo1), which was reduced by pretreatment with ghrelin. The protective effect of ghrelin was accompanied by an increased phosphorylation of Akt and glycogen synthase kinase (GSK)-3β. Furthermore, ghrelin phosphorylated and inactivated pro-apoptotic BAD and Foxo1. In addition, phospho-Akt was translocated to the nucleus in response to ghrelin and PI3K inhibition by LY294002 prevented ghrelin-induced effect on phospho-Akt localization. Our study suggests that suppression of CHOP activation via the inhibition of PERK/eIF2α/ATF4 pathway and prevention of Foxo1 activation and nuclear translocation may contribute to ghrelin-mediated neuroprotection during ER stress responses. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β, BAD and Foxo1 may be associated with the anti-apoptotic effect of ghrelin.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21490406
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"