COMMENT
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Leaky sodium channels from voltage sensor mutations in periodic paralysis, but not paramyotonia.

Neurology 2011 May 11
BACKGROUND: Hypokalemic periodic paralysis (HypoPP) is associated with mutations in either the Ca(V)1.1 calcium channel or the Na(V)1.4 sodium channel. Some Na(V)1.4 HypoPP mutations have been shown to cause an anomalous inward current that may contribute to the attacks of paralysis. Herein, we test whether disease-associated Na(V)1.4 mutations in previously untested homologous regions of the channel also give rise to the anomalous current.

METHODS: The functional properties of mutant Na(V)1.4 channels were studied with voltage-clamp techniques in an oocyte expression system.

RESULTS: The HypoPP mutation Na(V)1.4-R1132Q conducts an anomalous gating pore current, but the homologous R1448C mutation in paramyotonia congenita does not.

CONCLUSIONS: Gating pore currents arising from missense mutations at arginine residues in the voltage sensor domains of Na(V)1.4 are a common feature of HypoPP mutant channels and contribute to the attacks of paralysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app