JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Electrocatalytic properties of platinum nanoparticles supported on fluorine tin dioxide/multi-walled carbon nanotube composites for methanol electrooxidation in acidic medium.

Fluorine tin oxide (FTO) and multi-walled carbon nanotube (MWCNT) composites synthesized by a sol-gel process followed by a hydrothermal treatment process have been explored as a support for Pt nanoparticles (Pt-FTO/MWCNTs). X-ray diffraction analysis and high resolution transmission electron microscopy show that the Pt and FTO nanoparticles with crystallite size of around 4-8 nm are highly dispersed on the surface of MWCNTs. Pt-FTO/MWCNT catalyst is evaluated in terms of the electrochemical catalytic activity for methanol electrooxidation using cyclic voltammetry, steady state polarization experiments, and electrochemical impedance spectroscopy technique in acidic medium. The Pt-FTO/MWCNT catalyst exhibits a higher intrinsic catalytic activity for methanol electrooxidation with high stability during potential cycling than Pt nanoparticles supported on tin dioxide/multi-walled carbon nanotube composites. The results suggest that FTO/MWCNT composites could be considered as an alternative support for Pt-based electrocatalysts in direct alcohol fuel cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app