Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress.

Misfolded protein aggregates elicit a stress response, and their clearance is crucial for cell survival. These aggregates are transported by cytoplasmic deacetylase HDAC6 and dynein motors to the aggresome via the microtubule network, and are removed by autophagic degradation. HDAC6 activity is necessary for both the transport and clearance of protein aggregates. However, the cellular factors that regulate HDAC6 activity remain unknown. Here we show that protein kinase CK2 is a crucial modulator of HDAC6 activity because CK2 directly phosphorylates HDAC6 and increases cytoplasmic deacetylase activity. Indeed, cells that expressed HDAC6 mutated at Ser458, a CK2-mediated phosphorylation site, failed to both form and clear aggresomes, and increased cytotoxicity. Interestingly, Ser458 is conserved only in higher primates, such as human and chimpanzee, but not in the rhesus macaque. These findings identify CK2 as a crucial protein involved in the formation and clearance of aggresomes, and hence in cell viability in response to misfolded protein stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app