JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of inhibitors of hydrogen sulphide synthesis on rat colonic motility.

BACKGROUND AND PURPOSE: The role of hydrogen sulphide (H₂S) as a putative endogenous signalling molecule in the gastrointestinal tract has not yet been established. We investigated the effect of D,L-propargylglycine (PAG), an inhibitor of cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOAA) and hydroxylamine (HA), inhibitors of cystathionine β-synthase (CBS) on rat colonic motility.

EXPERIMENTAL APPROACH: Immunohistochemistry, H₂S production, microelectrode and organ bath recordings were performed on rat colonic samples without mucosa and submucosa to investigate the role of endogenous H₂S in motility.

KEY RESULTS: CSE and CBS were immunolocalized in the colon. H₂S was endogenously produced (15.6 ± 0.7 nmol·min⁻¹·g⁻¹ tissue) and its production was strongly inhibited by PAG (2 mM) and AOAA (2 mM). PAG (2 mM) caused smooth muscle depolarization and increased spontaneous motility. The effect was still recorded after incubation with tetrodotoxin (TTX, 1 µM) or N(ω) -nitro-L-arginine (L-NNA, 1 mM). AOAA (2 mM) caused a transient (10 min) increase in motility. In contrast, HA (10 µM) caused a 'nitric oxide-like effect', smooth muscle hyperpolarization and relaxation, which were antagonized by 1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, 10 µM). Neither spontaneous nor induced inhibitory junction potentials were modified by AOAA or PAG.

CONCLUSIONS AND IMPLICATIONS: We demonstrated that H₂S is endogenously produced in the rat colon. PAG and AOAA effectively blocked H₂S production. Our data suggest that enzymatic production of H₂S regulates colonic motility and therefore H₂S ight be a third gaseous inhibitory signalling molecule in the gastrointestinal tract. However, possible non-specific effects of the inhibitors should be considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app