Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2).

Zinc oxide (ZnO) is being used worldwide in consumer products and industrial applications. As humans are being directly exposed to ZnO nanoparticles (NPs) through different routes, it is likely that the NPs would gain access to the liver. Therefore, the present study investigated the cytotoxic and genotoxic potential of ZnO nanoparticles in human liver cells (HepG2). The MTT and neutral red uptake assay showed a significant (p < 0.05) concentration and time dependent toxicity after 12 and 24 h at 14 and 20 microg/ml. A (p < 0.05) significant increase in DNA damage was observed in cells exposed to ZnO NPs for 6 h as evident with an increase in the Olive tail moment (OTM) and % tail DNA in the Comet assay. The generation of intracellular reactive oxygen species further suggest the role of oxidative stress in ZnO nanoparticle mediated DNA damage and cytotoxicity in HepG2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app