Add like
Add dislike
Add to saved papers

Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells.

Doxorubicin (DOX) is a broad-spectrum anthracycline antibiotic used to treat a variety of cancers including leukemia. Chronic myeloid leukemia (CML) blasts like K562 cells are resistant to apoptosis induced by DOX due to several reasons, the primary being the sequestration of drug into cytoplasmic vesicles and induction of multidrug resistance (MDR) gene expression with DOX treatment resulting in intracellular resistance to this drug. Moreover, expression of antiapoptotic protein BCL-2 and the hybrid gene bcr/abl in K562 cells contributes resistance to DOX. Studies have shown that curcumin (CUR) has a pleiotropic therapeutic effect in cancer treatment, as it is an inhibitor of nuclear factor kappa B (NFκB) as well as a potent downregulator of MDR transporters. In this study, we investigated the potential benefit of using DOX and CUR in a single nanoparticle (NP) formulation to inhibit the development of drug resistance for the enhancement of antiproliferative activity of DOX in K562 cells. Results illustrate that the dual (DOX+CUR) drug loaded NPs were effectively delivered into K562 cells. CUR not only facilitates the retention of DOX in nucleus for a longer period of time but also inhibits the gradual expression of MDR1 and BCL-2 at the mRNA level in K562 cells. Moreover, Western blot results confirm that in combination both of the drugs were capable of inducing apoptosis even if in a lower concentration compared to either single drug in both solution or in formulation. Combinational therapy by using DOX and CUR, especially when administered in the NP formulation, has enhanced the cytotoxicity in K562 cells by promoting the apoptotic response. Overall, this combinational strategy has significant promise in the clinical management of intractable diseases, especially leukemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app