COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Shear flow induced changes in apolipoprotein C-II conformation and amyloid fibril formation.

Biochemistry 2011 May 18
The misfolding and self-assembly of proteins into amyloid fibrils that occur in several debilitating diseases are affected by a variety of environmental factors, including mechanical factors associated with shear flow. We examined the effects of shear flow on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Shear fields (150, 300, and 500 s(-1)) accelerated the rate of apoC-II fibril formation (1 mg/mL) approximately 5-10-fold. Fibrils produced at shear rates of 150 and 300 s(-1) were similar to the twisted ribbon fibrils formed in the absence of shear, while at 500 s(-1), tangled ropelike structures were observed. The mechanism of the shear-induced acceleration of amyloid fibril formation was investigated at low apoC-II concentrations (50 μg/mL) where fibril formation does not occur. Circular dichroism and tryptophan fluorescence indicated that shear induced an irreversible change in apoC-II secondary structure. Fluorescence resonance energy transfer experiments using the single tryptophan residue in apoC-II as the donor and covalently attached acceptors showed that shear flow increased the distance between the donor and acceptor molecules. Shear-induced higher-order oligomeric species were identified by sedimentation velocity experiments using fluorescence detection, while fibril seeding experiments showed that species formed during shear flow are on the fibril formation pathway. These studies suggest that physiological shear flow conditions and conditions experienced during protein manufacturing can exert significant effects on protein conformation, leading to protein misfolding, aggregation, and amyloid fibril formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app