JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing.

Nanotechnology 2011 June 11
We demonstrate that dark plasmon modes of cavity-shaped plasmonic structures made of metallic nanowires can be excited by local dipoles induced via second-harmonic generation. The optical properties of these plasmonic cavity modes are thoroughly characterized by using a numerical method that provides a complete description of the optical field at both the fundamental frequency and the second harmonic. In particular, we show that the optical properties of these plasmonic cavity modes are strongly dependent on the geometry of the plasmonic cavity and the material parameters of its constituents. This enhanced sensitivity of dark plasmonic cavity modes to the surrounding dielectric environment can find applications in plasmonic sensing. Specifically, this novel approach to sensing reveals that detection limits of 10(-5) refractive index units can readily be achieved by using wavelength-sized plasmonic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app