Add like
Add dislike
Add to saved papers

The 5-HT(1) receptors inhibiting the rat vasodepressor sensory CGRPergic outflow: further involvement of 5-HT(1F), but not 5-HT(1A) or 5-HT(1D), subtypes.

We have previously shown that 5-HT(1B) receptors inhibit prejunctionally the rat vasodepressor CGRPergic sensory outflow. Since 5-HT(1) receptors comprise 5-HT(1A), 5-HT(1B), 5-HT(1D) and 5-HT(1F) functional subtypes, this study has further investigated the role of 5-HT(1A), 5-HT(1D) and 5-HT(1F) receptor subtypes in the inhibition of the above vasodepressor sensory outflow. Pithed rats were pretreated with i.v. continuous infusions of hexamethonium and methoxamine, followed by 5-HT(1) receptor agonists. Then electrical spinal stimulation (T(9)-T(12)) or i.v. bolus injections of exogenous α-CGRP produced frequency-dependent or dose-dependent vasodepressor responses. The electrically-induced vasodepressor responses remained unchanged during infusions of the 5-HT(1A) receptor agonists 8-OH-DPAT and NN-DP-5-CT. In contrast, these responses were inhibited by the agonists sumatriptan (5-HT(1A/1B/1D/1F)), indorenate (5-HT(1A)), PNU-142633 (5-HT(1D)) or LY344864 (5-HT(1F)), which did not affect the vasodepressor responses to exogenous CGRP (implying a prejunctional sensory-inhibition). When analysing the effects of antagonists: (i) 310 μg/kg (but not 100 μg/kg) GR127935 (5-HT(1A/1B/1D/1F)) abolished the inhibition to sumatriptan, indorenate, PNU-142633 or LY344864; (ii) 310 μg/kg SB224289 (5-HT(1B)) or BRL15572 (5-HT(1D)) failed to block the inhibition to sumatriptan or PNU-142633, whereas SB224289+BRL15572 partly blocked the inhibition to sumatriptan; and (iii) 10 μg/kg WAY100635 (5-HT(1A)) failed to block the inhibition to indorenate. These results suggest that 5-HT(1F), but not 5-HT(1A) or 5-HT(1D), receptor subtypes inhibit the vasodepressor sensory CGRPergic outflow although, admittedly, no selective 5-HT(1F) receptor agonist is available yet. The pharmacological profile of these receptors resembles that shown in rat dorsal root ganglia by molecular biology techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app