CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Asymptomatic small fiber neuropathy in diabetes mellitus: investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials.

This study aimed at evaluating the performance of a battery of morphological and functional tests for the assessment of small nerve fiber loss in asymptomatic diabetic neuropathy (DNP). Patients diagnosed for ≥10 years with type 1 (n = 10) or type 2 (n = 13) diabetes mellitus (DM) without conventional symptoms or signs of DNP were recruited and compared with healthy controls (n = 18) and patients with overt DNP (n = 5). Intraepidermal nerve fiber density (IENFd) was measured with PGP9.5 immunostaining on punch skin biopsies performed at the distal leg. Functional tests consisted of quantitative sensory testing (QST) for light-touch, cool, warm and heat pain detection thresholds and brain-evoked potentials with electrical (SEPs) and CO(2) laser stimulation [laser-evoked potentials (LEPs)] of hand dorsum and distal leg using small (0.8 mm(2)) and large (20 mm(2)) beam sizes. Results confirmed a state of asymptomatic DNP in DM, but only at the distal leg. Defining a critical small fiber loss as a reduction of IENFd ≤-2 z scores of healthy controls, this state prevailed in type 2 (30%) over type 1 DM (10%) patients despite similar disease duration and current glycemic control. LEPs with the small laser beam performed best in terms of sensitivity (91%), specificity (83%) and area-under-the ROC curve (0.924). Although this performance was not statically different from that of warm and cold detection threshold, LEPs offer an advantage over QST given that they bypass the subjective report and are therefore unbiased by perceptual factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app