JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex.

The cannabinoid CB1 receptor system is critically involved in the control of associative fear memory formation within the amygdala-prefrontal cortical pathway. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the prelimbic division (PLC) of the medial prefrontal cortex (mPFC). However, the precise role of CB1 receptor transmission within the BLA during the processing of fear memory is not fully understood. We examined the potential role of BLA CB1 receptor transmission during an olfactory fear-conditioning procedure in rats by pharmacologically modulating CB1 cannabinoid transmission directly within the BLA. We report that blockade of BLA CB1 receptor transmission prevents the acquisition of associative fear memory, while having no effect on the recall or consolidation of these memories. In contrast, intra-BLA activation of CB1 receptor transmission or blockade of endocannabinoid reuptake strongly potentiated the emotional salience of normally subthreshold fear-conditioning stimuli. In addition, pharmacological inactivation of the mPFC before intra-BLA CB1 activation blocked CB1-receptor-mediated potentiation of fear memory formation. In vivo single-unit electrophysiological recordings within the PLC revealed that modulation of BLA CB1 receptor transmission strongly influences neuronal activity within subpopulations of PLC neurons, with blockade of intra-BLA CB1 receptor transmission inhibiting spontaneous PLC neuronal activity and activation of CB1 receptors producing robust activation, in terms of neuronal firing frequency and bursting activity. Thus, cannabinoid transmission within the BLA strongly modulates the processing of associative fear memory via functional interactions with PLC neuronal populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app