JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Δ8-Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB2 receptors.

BACKGROUND AND PURPOSE: Activation of cannabinoid CB(2) receptors protects against various forms of ischaemia-reperfusion (I/R) injury. Δ(8) -Tetrahydrocannabivarin (Δ(8) -THCV) is a synthetic analogue of the plant cannabinoid Δ(9) -tetrahydrocannabivarin, which exhibits anti-inflammatory effects in rodents involving activation of CB(2) receptors. Here, we assessed effects of Δ(8) -THCV and its metabolite 11-OH-Δ(8) -THCV on CB(2) receptors and against hepatic I/R injury.

EXPERIMENTAL APPROACH: Effects in vitro were measured with human CB(2) receptors expressed in CHO cells. Hepatic I/R injury was assessed in mice with 1h ischaemia and 2, 6 or 24h reperfusion in vivo.

KEY RESULTS: Displacement of [(3) H]CP55940 by Δ(8) -THCV or 11-OH-Δ(8) -THCV from specific binding sites in CHO cell membranes transfected with human CB(2) receptors (hCB(2) ) yielded K(i) values of 68.4 and 59.95 nM respectively. Δ(8) -THCV or 11-OH-Δ(8) -THCV inhibited forskolin-stimulated cAMP production by hCB(2) CHO cells (EC(50) = 12.95 and 14.3 nM respectively). Δ(8) -THCV, given before induction of I/R, attenuated hepatic injury (measured by serum alanine aminotransferase and aspartate aminotransferase levels), decreased tissue protein carbonyl adducts, 4-hydroxy-2-nonenal, the chemokines CCL3 and CXCL2,TNF-α, intercellular adhesion molecule 1 (CD54) mRNA levels, tissue neutrophil infiltration, caspase 3/7 activity and DNA fragmentation. Protective effects of Δ(8) -THCV against liver damage were still present when the compound was given at the beginning of reperfusion. Pretreatment with a CB(2) receptor antagonist attenuated the protective effects of Δ(8) -THCV, while a CB(1) antagonist tended to enhance it.

CONCLUSIONS AND IMPLICATIONS: Δ(8) -THCV activated CB(2) receptors in vitro, and decreased tissue injury and inflammation in vivo, associated with I/R partly via CB(2) receptor activation.

LINKED ARTICLES: This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit https://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit https://dx.doi.org/10.1111/bph.2011.163.issue-7.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app