Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-cancer effects of a novel compound HS-113 on cell growth, apoptosis, and angiogenesis in human hepatocellular carcinoma cells.

Cancer Letters 2011 July 29
Hepatocellular carcinoma (HCC) is one of the most common malignancies, yet there have been no significant advances in effective therapeutics. In this study, HS-113 was synthesized as a novel compound, N-(5-(2-bromobenzyl) thiazole-2-yl) benzofuran-2-carboxamide and its cytotoxic activity and anti-cancer effect were examined in human HCC cells. HS-113 strongly suppressed growth of HCC cells in a dose-dependent manner, induced apoptosis by increasing the proportion of sub-G1 apoptotic cells, and caused cell cycle arrest at G0/G1 phase. Also, HS-113 increased the expression of p27 and decreased that of cyclin D1 associated with cell cycle arrest. Apoptosis by HS-113 was confirmed by DAPI and TUNEL staining, and the increases of the cleaved PARP and caspase-3 were observed. Furthermore, HS-113 decreased protein expression of HIF-1α and secretion of VEGF, and inhibited the tube formation of HUVECs. These results showed that HS-113 not only inhibited cell growth and angiogenesis, but also induced apoptosis of human HCC cells. We suggest that HS-113 may be a potential candidate for cancer therapy against HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app