Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance

Hongbo Gao, Yongxia Jia, Shirong Guo, Guiyun Lv, Tian Wang, Li Juan
Journal of Plant Physiology 2011 July 15, 168 (11): 1217-25
We investigated the effects of short-term root-zone hypoxic stress and exogenous calcium application or deficiency in an anoxic nutrient solution on nitrogen metabolism in the roots of the muskmelon cultivar Xiyu No. 1. Seedlings grown in the nutrient solution under hypoxic stress for 6d displayed significantly reduced plant growth and soluble protein concentrations. However, NO₃⁻ uptake rate and activities of nitrate reductase and glutamate synthase were significantly increased. We also found higher amounts of nitrate, ammonium, amino acids, heat-stable proteins, polyamines, H₂O₂, as well as higher polyamine oxidase activity in the roots. In comparison to the reactions seen under hypoxic stress, exogenous calcium application led to a marked increase in plant weights, photosynthesis parameters, NO₃⁻ uptake rate and contents of nitrate, ammonium, amino acids (e.g., glutamic acid, proline, glycine, cystine, γ-aminobutyric acid), soluble and heat-stable proteins, free spermine, and insoluble bound polyamines. Meanwhile, exogenous calcium application resulted in significantly increased activities for nitrate reductase, glutamine synthetase, and glutamate synthase but decreased activities for diamine and polyamine oxidase, as well as lower H₂O₂ content in roots during exposure to hypoxia. However, calcium deficiency in the nutrient solution decreased plant weight, photosynthesis parameters, NO₃⁻ reduction, amino acids (e.g., alanine, aspartic acid, glutamic acid, γ-aminobutyric acid), protein, all polyamines except for free putrescine, and the activities of glutamate synthase and glutamine synthetase. Additionally, there was an increase in the NO₃⁻ uptake rate, polyamine oxidase activity and H₂O₂ contents under hypoxia-Ca. Simultaneously, exogenous calcium had little effect on nitrate absorption and transformation, photosynthetic parameters, and plant growth under normoxic conditions. These results suggest that calcium confers short-term hypoxia tolerance in muskmelon, most likely by promoting nitrate uptake and accelerating its transformation into amino acids, heat-stable proteins or polyamines, as well as by decreasing polyamine degradation in muskmelon seedlings.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"