Add like
Add dislike
Add to saved papers

Hyaluronan facilitates transforming growth factor-β1-dependent proliferation via CD44 and epidermal growth factor receptor interaction.

Fibroblast proliferation is an early feature of progressive tissue fibrosis and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). In the oral mucosa, fibroblasts have a unique phenotype and demonstrate healing with no fibrosis/scarring. Our previous studies show that whereas dermal fibroblasts proliferate in response to TGF-β1, oral fibroblasts have an antiproliferative response to this cytokine. Hyaluronan (HA) was directly linked to this TGF-β1-dependent response. The aim of this study was to understand the underlying mechanism through which HA regulates TGF-β-dependent responses. Using patient-matched oral and dermal fibroblasts, we show that TGF-β1-dependent proliferation is mediated through the HA receptor CD44, whereas the TGF-β1-mediated antiproliferative response is CD44-independent. Furthermore, overexpression of HAS2 (HA synthase-2) in oral cells modifies their response, and they subsequently demonstrate a proliferative, CD44-dependent response to TGF-β1. We also show that epidermal growth factor (EGF) and its receptor (EGFR) are essential for TGF-β1/HA/CD44-dependent proliferation. Increased HA levels promote EGFR and CD44 coupling, potentiating signal transduction through the MAPK/ERK pathway. Thus, in a HA-rich environment, late ERK1/2 activation results from EGFR/CD44 coupling and leads to a proliferative response to TGF-β1. In comparison, in a non-HA-rich environment, only early ERK1/2 activation occurs, and this is associated with an antiproliferative response to TGF-β1. In summary, HA facilitates TGF-β1-dependent fibroblast proliferation through promoting interaction between CD44 and EGFR, which then promotes specific MAPK/ERK activation, inducing cellular proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app