Evolution of Hox post-transcriptional regulation by alternative polyadenylation and microRNA modulation within 12 Drosophila genomes

Pedro Patraquim, Maria Warnefors, Claudio R Alonso
Molecular Biology and Evolution 2011, 28 (9): 2453-60
Hox genes encode a family of transcriptional regulators that operate differential developmental programs along the anteroposterior axis of bilateral animals. Regulatory changes affecting Hox gene expression are believed to have been crucial for the evolution of animal body plans. In Drosophila melanogaster, Hox expression is post-transcriptionally regulated by microRNAs (miRNAs) acting on target sites located in the 3' untranslated regions (3'UTRs) of Hox mRNAs. Notably, recent work has shown that during D. melanogaster development Hox genes produce mRNAs with variable 3'UTRs (short and long forms) in different sets of tissues as a result of alternative polyadenylation; importantly, Hox short and long 3'UTRs contain very different target sites for miRNAs. Here, we use a computational approach to explore the evolution of Hox 3'UTRs treated with especial regard to miRNA regulation. Our work is focused on the 12 Drosophila species for which genomic sequences are available and shows, first, that alternative polyadenylation of Hox transcripts is a feature shared by all drosophilids tested in the study. Second, that the regulatory impact of miRNAs is evolving very fast within the Drosophila group. Third, that in contrast to the low degree of primary sequence conservation, Hox 3'UTR regions within the group show very similar RNA topology indicating that RNA structure is under strong selective pressure. Finally, we also demonstrate that Hox alternative polyadenylation can remodel the control regions seen by miRNAs by at least two mechanisms: via adding new cis-regulatory sequences-in the form of miRNA target sites-to short 3'UTR forms as well as by modifying the regulatory impact of miRNA target sites in short 3'UTR forms through changes in RNA secondary structure caused by the use of distal polyadenylation signals.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"