JOURNAL ARTICLE
REVIEW

Engineering the future. Development of transgenic plants with enhanced tolerance to adverse environments

Matias D Zurbriggen, Mohammad-Reza Hajirezaei, Nestor Carrillo
Biotechnology & Genetic Engineering Reviews 2010, 27: 33-56
21415892
Environmental stresses - especially drought and salinity - and iron limitation are the primary causes of crop yield losses. Therefore, improvement of plant stress tolerance has paramount relevance for agriculture, and vigorous efforts are underway to design stress-tolerant crops. Three aspects of this ongoing research are reviewed here. First, attempts have been made to strengthen endogenous plant defences, which are characterised by intertwined, hierarchical gene networks involved in stress perception, signalling, regulation and expression of effector proteins, enzymes and metabolites. The multigenic nature of this response requires detailed knowledge of the many actors and interactions involved in order to identify proper intervention points, followed by significant engineering of the prospective genes to prevent undesired side-effects. A second important aspect refers to the effect of concurrent stresses as plants normally meet in the field (e.g., heat and drought). Recent findings indicate that plant responses to combined environmental hardships are somehow unique and cannot be predicted from the addition of the individual stresses, underscoring the importance of programming research within this conceptual framework. Finally, the photosynthetic microorganisms from which plants evolved (i.e., algae and cyanobacteria) deploy a totally different strategy to acquire stress tolerance, based on the substitution of stress-vulnerable targets by resistant isofunctional proteins that could take over the lost functions under adverse conditions. Reintroduction of these ancient traits in model and crop plants has resulted in increased tolerance to environmental hardships and iron starvation, opening a new field of opportunities to increase the endurance of crops growing under suboptimal conditions.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21415892
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"