JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Downregulation of methylthioadenosin phosphorylase by homozygous deletion in gastric carcinoma.

The methylthioadenosine phosphorylase (MTAP) gene is located on 9p21 telomeric to the CDKN2A tumor suppressor gene. Loss of MTAP gene is frequently associated with CDKN2A homozygous deletion. Although the homozygous deletion of MTAP has been reported in various human cancers, its function in gastric carcinogenesis is unknown. Here, we determined the status of the MTAP gene by using a combination of array-based comparative genomic hybridization and oligonucleotide microarray. It was found that MTAP was deleted and downregulated in 2 of 10 gastric cancer cell lines. Of the 494 primary gastric carcinomas examined, MTAP expression at the protein level was reduced in 59 (11.9%). Furthermore, a lack of MTAP expression was found to be associated with poor survival (P = 0.038). The genomic loss of MTAP and CDKN2A in gastric carcinomas was investigated by quantitative real-time PCR. Among 20 gastric carcinomas, two cases showed deletion of both MTAP and CDKN2A, and three samples showed homozygous deletion of MTAP, but not of CDKN2A. An analysis of gastric carcinomas revealed that reduced MTAP expression correlated significantly with a genomic deletion. Furthermore, functional assays by transfecting the siRNA or the expressional cDNA into gastric cancer cell lines demonstrated that MTAP regulates cell growth and invasion. The present study suggests that MTAP plays an important role in the regulation of gastric carcinogenesis and, in particular, that MTAP loss is implicated in some way with tumor growth via the modulation of cellular properties, which, in turn, suggests that MTAP has therapeutic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app