Give me a break, but not in mitosis: the mitotic DNA damage response marks DNA double-strand breaks with early signaling events

Simona Giunta, Stephen P Jackson
Cell Cycle 2011 April 15, 10 (8): 1215-21
: DNA double-strand breaks (DSBs) are extremely cytotoxic with a single unrepaired DSB being sufficient to induce cell death. A complex signalling cascade, termed the DNA damage response (DDR), is in place to deal with such DNA lesions and maintain genome stability. Recent work by us and others has found that the signalling cascade activated by DSBs in mitosis is truncated, displaying apical, but not downstream, components of the DDR. The E3 Ubiquitin ligases RNF8, RNF168 and BRCA1, along with the DDR mediator 53BP1, are not recruited to DSB sites in mitosis, and activation of downstream checkpoint kinases is also impaired. Here, we show that RNF8 and RNF168 are recruited to DNA damage foci in late mitosis, presumably to prime sites for 53BP1 recruitment in early G1. Interestingly, we show that, although RNF8, RNF168 and 53BP1 are excluded from DSB sites during most of mitosis, they associate with mitotic structures such as the kinetochore, suggesting roles for these DDR factors during mitotic cell division. We discuss these and other recent findings and suggest how these novel data collectively contribute to our understanding of mitosis and how cells deal with DNA damage during this crucial cell cycle stage.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"