Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed.

Nano Letters 2011 April 14
Symmetry-breaking introduced by an adjacent semi-infinite dielectric can introduce coupling and hybridization of the plasmon modes of a metallic nanostructure. This effect is particularly large for entities with a large contact area adjacent to the dielectric. For a nanocube, a nearby dielectric mediates an interaction between bright dipolar and dark quadrupolar modes, resulting in bonding and antibonding hybridized modes. The Fano resonance that dominates the scattering spectrum arises from the interference of these modes. This analysis provides a strategy for optimizing the sensitivity of nanostructures, whether chemically synthesized or grown by deposition methods, as high-performance localized surface plasmon resonance sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app