JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synthesis and crystal growth of Cs(0.8)(FeSe(0.98))(2): a new iron-based superconductor with T(c) = 27 K.

We report on the synthesis of large single crystals of a new FeSe layer superconductor Cs(0.8)(FeSe(0.98))(2). X-ray powder diffraction, neutron powder diffraction and magnetization measurements have been used to compare the crystal structure and the magnetic properties of Cs(0.8)(FeSe(0.98))(2) with those of the recently discovered potassium intercalated system K(x)Fe(2)Se(2). The new compound, Cs(0.8)(FeSe(0.98))(2), shows a slightly lower superconducting transition temperature (T(c) = 27.4 K) in comparison to 29.5 in (K(0.8)(FeSe(0.98))(2)). The volume of the crystal unit cell increases by replacing K by Cs-the c parameter grows from 14.1353(13) to 15.2846(11) Å. For the alkali metal intercalated layered compounds known so far, (K(0.8)Fe(2)Se(2) and Cs(0.8)(FeSe(0.98))(2)), the T(c) dependence on the anion height (distance between Fe layers and Se layers) was found to be analogous to those reported for As-containing Fe superconductors and Fe(Se(1 - x)Ch(x)), where Ch = Te, S.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app