JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Three-dimensional structure of multicomponent (Na₂O)0.₃₅ [(P₂O₅)₁- x(B₂O₃)x]0.₆₅ glasses by high-energy x-ray diffraction and constrained reverse Monte Carlo simulations.

Experimental structure functions for (Na(2)O)(0.35) [(P(2)O(5))(1 - x)(B(2)O(3))(x)](0.65) glasses, where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, have been measured by high-energy x-ray diffraction up to wavevectors of 28 Å( - 1) to obtain atomic pair distribution functions with high real space resolution. The experimental diffraction data have been used to guide constrained reverse Monte Carlo simulations of the three-dimensional structure of the glasses. The resulting models show that the glasses exhibit a very complex atomic-scale structure that evolves from an assembly of chains of corner shared P(O)(4) tetrahedra for x = 0 to a network of B(O)(4) tetrahedra and planar B(O)(3) units for x = 1. In the glasses of intermediate composition (i.e.  0 < x < 1), P, B and oxygen atoms sit on the vertices of P(O)(4), B(O)(4) and B(O)(3) units mixed in various proportions. Sodium atoms are found to fill up the cavities in between the P/B-oxygen units in a more or less random manner. The new data can provide a firm structural basis for an explanation of the mixed glass former effect where a nonlinear behavior of Na ion conductivity is observed in the (Na(2)O)(0.35) [(P(2)O(5))(1 - x)(B(2)O(3))(x)](0.65) glass system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app