Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Ataxia telangiectasia mutated kinase plays a protective role in β-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling.

β-Adrenergic receptor (β-AR) stimulation induces cardiac myocyte apoptosis and plays an important role in myocardial remodeling. Here we investigated expression of various apoptosis-related genes affected by β-AR stimulation, and examined first time the role of ataxia telangiectasia mutated kinase (ATM) in cardiac myocyte apoptosis and myocardial remodeling following β-AR stimulation. cDNA array analysis of 96 apoptosis-related genes indicated that β-AR stimulation increases expression of ATM in the heart. In vitro, RT-PCR confirmed increased ATM expression in adult cardiac myocytes in response to β-AR stimulation. Analysis of left ventricular structural and functional remodeling of the heart in wild-type (WT) and ATM heterozygous knockout mice (hKO) 28 days after ISO-infusion showed increased heart weight to body weight ratio in both groups. M-mode echocardiography showed increased percent fractional shortening (%FS) and ejection fraction (EF%) in both groups 28 days post ISO-infusion. Interestingly, the increase in %FS and EF% was significantly lower in the hKO-ISO group. Cardiac fibrosis and myocyte apoptosis were higher in hKO mice at baseline and ISO-infusion increased fibrosis and apoptosis to a greater extent in hKO-ISO hearts. ISO-infusion increased phosphorylation of p53 (Serine-15) and expression of p53 and Bax to a similar extent in both groups. hKO-Sham and hKO-ISO hearts exhibited reduced intact β1 integrin levels. MMP-2 protein levels were significantly higher, while TIMP-2 protein levels were lower in hKO-ISO hearts. MMP-9 protein levels were increased in WT-ISO, not in hKO hearts. In conclusion, ATM plays a protective role in cardiac remodeling in response to β-AR stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app