Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize.

Eukaryotic gene expression is regulated at least by two processes, RNA interference at the post-transcriptional level and chromatin modification at the transcriptional level. Distinct small RNAs (approximately 21-24 nucleotides; sRNAs) were demonstrated to play vital roles in facilitating gene silencing. In plants, the generation of these sRNAs mainly depends on some proteins encoded by respective Dicer-like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerases (RDR) gene families. Here, we analyzed the DCL, AGO and RDR gene families in maize, including gene structure, phylogenetic relationships, protein conserved motifs and genomic localization among gene family members. A total of 5 Zmdcl, 18 Zmago and 5 Zmrdr genes were identified in maize. Phylogenetic analyses clustered each of these genes families into four subfamilies. In addition, gene chromosomal localization revealed that five pairs of Zmago genes resulted from tandem or segmental duplication, respectively. EST expression data mining revealed that these newly identified genes had temporal and spatial expression pattern. Furthermore, the transcripts of these genes were detected in the leaves by two different abiotic stress treatments using semi-quantitative RT-PCR. The data demonstrated that these genes exhibited different expression levels in stress treatments. The results of this study provided basic genomic information for these gene families and insights into the probable roles of these genes in plant growth and development. This will further provide a solid foundation for future functional genomics studies of Dicer-like, Argonaute and RDR gene families in maize.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app