Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Magnetism in bcc and fcc Fe with carbon and manganese.

Density functional theory calculations were performed to study the structure and magnetic properties of bcc (α) and fcc (γ) Fe with 3 at.% carbon and manganese impurities. We find that all bcc-based Fe, Fe-C and Fe-Mn-C phases exhibit a ferromagnetic (FM) ground state, while the antiferromagnetic double-layer (AFMD) state is lowest in energy within the collinear spin approach in fcc Fe, Fe-C and Fe-Mn-C phases. However, the carbon and manganese impurities affect the local magnetic interactions significantly. The states with opposite manganese magnetic moments are quasi-degenerate in bcc Fe-Mn alloy, whereas octa-site carbon stabilizes ferromagnetic coupling of the nearest manganese atom with the Fe host. We demonstrate that the antiferromagnetic (AFM) fcc Fe-C and Fe-Mn-C alloys are intrinsically inhomogeneous magnetic systems. Carbon frustrates the local magnetic order by reorientation of magnetic moments of the nearest Mn and Fe atoms, and favors their ferromagnetic coupling. The competition between ferromagnetic and antiferromagnetic Fe-Fe and Fe-Mn interactions and the local magnetovolume instability near carbon may give rise to the spin-glass-like regions observed in austenitic Fe-Mn-C alloys.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app