JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways.

Evidence from both clinical and experimental studies indicates that Di-peptidyl peptidase-IV (DPP-4) inhibition may mediate favorable effects on the cardiovascular system. The objective of this study was to examine the acute effects of DPP-4 inhibition on vascular responses and to study the underlying mechanisms of alteration in tone. Aortic segments from C57BL/6 mice were treated with vasoconstrictors and exposed to various doses of alogliptin, a selective DPP-4 inhibitor. Vasodilator responses were evaluated using pathway specific antagonists to elucidate mechanisms of response. In parallel experiments, cultured human umbilical vein endothelial cells (HUVEC) were exposed to varying concentrations of alogliptin to evaluate the effects on candidate vasodilator pathways. Alogliptin relaxed phenylephrine and U46619 pre-constricted aortic segments in a dose dependent manner. Relaxation responses were not affected by the glucagon-like peptide-1 (GLP-1) receptor antagonist, exendin fragment 9-39 (88 ± 6 vs. 91 ± 2, p < 0.001). Vascular relaxation to alogliptin was significantly decreased by endothelial denudation, L-N(G)-monomethyl-arginine citrate (L-NMMA) and by the soluble guanylate cyclase inhibitor ODQ. DPP-4 inhibition induced relaxation was completely abolished by a combination of L-NMMA, charybdotoxin and apamin. Incubation of HUVECs with alogliptin resulted in eNOS and Akt phosphorylation (Ser(1177) and Ser(473) respectively) paralleled by a rapid increase in nitric oxide. Inhibition of Src kinase decreased eNOS and Akt phosphorylation, in contrast to a lack of any effect on insulin mediated activation of the eNOS-Akt, suggesting that alogliptin mediates vasodilation through Src kinase mediated effects on eNOS-Akt. DPP-4 inhibition by alogliptin mediates rapid vascular relaxation via GLP-1 independent, Src-Akt-eNOS mediated NO release and the activation of vascular potassium channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app