JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development of multiplex PCR assays based on the 16S-23S rRNA internal transcribed spacer for the detection of clinically relevant nontuberculous mycobacteria.

AIMS: To accelerate the identification and differentiation of clinically relevant nontuberculous mycobacteria (NTM) with two sets of multiplex PCR (mPCR) targeting the 16S-23S rRNA internal transcribed spacer (ITS) region for timely patient management.

METHODS AND RESULTS: Two mPCR assays were developed: Slow-Growers (SG) mPCR was used for the detection of slow-growing mycobacteria, which included Mycobacterium avium complex, Mycobacterium kansasii, Mycobacterium gordonae and Mycobacterium xenopi whilst the other mPCR assay labelled as Fast-Growers (FG) mPCR was used for the detection of Mycobacterium fortuitum complex, Mycobacterium abscessus and Mycobacterium chelonae. In these assays, a common forward primer based on a conserved section of the 16S rRNA region was used in conjunction with species-specific reverse primers. The mPCRs were tested against 247 clinical mycobacterial isolates and demonstrated 100% specificity and sensitivity. Identification of the mycobacterial species was also validated by DNA sequencing of the 16S-23S ITS region and when further confirmation was needed, hsp65 sequencing was performed.

CONCLUSIONS: The mPCR assays could be a potentially useful diagnostic tool for the rapid and accurate identification of clinically relevant NTM.

SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, we looked at the frequency of hospital isolated NTM over the last 5 years (2005-2010), and an mPCR targeting the ITS region was developed for NTM species that appeared to be more prevalent in the context of Singapore.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app