CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism.

BACKGROUND: Autosomal recessive hereditary spastic paraplegia with thin corpus callosum is a neurodegenerative disorder characterized by spastic paraparesis, cognitive impairment, and peripheral neuropathy. The neuroradiologic hallmarks are thin corpus callosum and periventricular white matter changes. Mutations in the SPG11 gene have been identified to be a major cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and recently also proven to be responsible for juvenile parkinsonism associated with spastic paraplegia.

METHODS: We describe one Italian autosomal recessive hereditary spastic paraplegia with thin corpus callosum patient who unusually presented at onset, 16 years, with parkinsonism-like features, responsive to dopaminergic therapy. Then the clinical picture evolved and became more complex. A brain magnetic resonance imaging scan showed thin corpus callosum and hyperintense T(2)-weighted lesions in periventricular regions, and the (123)I-ioflupane single-photon emission coupled tomography was abnormal.

RESULTS: Genetic analysis detected two novel mutations, a c.3664insT variant in compound heterozygosity with a c.6331insG mutation, in SPG11.

DISCUSSION: This case confirms the high genetic and clinical heterogeneity associated with SPG11 mutations. It also offers further evidence that parkinsonism may initiate autosomal recessive hereditary spastic paraplegia with thin corpus callosum and that parkinsonian symptoms can have variable dopaminergic response in these patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app