Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells.

The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryogenic morphogenesis. In malignant neoplasms its inappropriate activation correlates with tumorigenesis, proliferation, and migration. However, the role of SHH in infiltrative growth of glioblastoma remains to be elucidated. CD133 is a marker of tumor stem cells in glioblastoma, which are thought to play important roles in tumorigenesis, drug resistance, and tumor recurrence. We investigated the role of the SHH signaling pathway in migration of glioblastoma cell lines derived from CD133-positive cells. Two cell lines, GBM1 and GBM2, were established from CD133-positive cells sorted on an automagnetic cell separator from dispersed human glioblastoma cells. Both cell lines exhibited sphere-like growth in serum-free medium containing growth factor. Expression of patched (PTCH)-, a receptor of SHH, of smoothened (SMO)-, a 7 transmembrane receptor, and of GLI1- and GLI2, PTCH cascade signal proteins, was evaluated by reverse-transcription polymerase chain reaction (RT-PCR). The effects of recombinant SHH in the medium, and of knockdown of SMO-, GLI1- or GLI2 messenger RNA (mRNA) on the migratory ability of neoplastic cells were evaluated by scratch assays. RT-PCR revealed the presence of PTCH-, SMO-, GLI1-, and GLI2 mRNA in these cells. Their migratory ability was significantly enhanced (P < 0.05) by addition of recombinant SHH to the medium. Knockdown of SMO-, GLI1- or GLI2 mRNA resulted in significant decrease in the mobility of the neoplastic cells. Our study suggests that the SHH pathway plays an important role in the migratory ability of cells derived from CD133-positive human glioblastoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app