Add like
Add dislike
Add to saved papers

Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length.

The TiO(2)-B nanobelt (NB)/TiO(2) nanoparticle (NP) sandwich-type structure photoelectrode, with controllable nanobelt length, has been used to fabricate high-efficiency dye-sensitized solar cells (DSSCs), which combine the advantages of the rapid electron transport in TiO(2)-B NBs and the high surface area of TiO(2) NPs. The results indicate that the sandwich-type photoelectrode achieves higher photoelectrical conversion efficiency when compared with the TiO(2) nanoparticulate electrode. Increasing the length of TiO(2)-B NBs has been demonstrated to improve the photoelectric conversion efficiency (η). DSSCs with the longest (10 μm) TiO(2)-B NBs yield the highest η of 7.94%. The interfacial electron transport of DSSCs with different lengths of TiO(2)-B NBs has been quantitatively investigated using the photovoltage transient and the electrochemical impedance spectra, which demonstrates that the DSSCs with longest TiO(2)-B NBs display the highest electron collection efficiency and the fastest interfacial electron transfer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app