JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase β.

Molecular Cell 2011 March 5
DNA base excision repair (BER) is an essential cellular process required for genome stability, and misregulation of BER is linked to premature aging, increased rate of mutagenesis, and cancer. We have now identified the cytoplasmic ubiquitin-specific protease USP47 as the major enzyme involved in deubiquitylation of the key BER DNA polymerase (Pol β) and demonstrate that USP47 is required for stability of newly synthesized cytoplasmic Pol β that is used as a source for nuclear Pol β involved in DNA repair. We further show that knockdown of USP47 causes an increased level of ubiquitylated Pol β, decreased levels of Pol β, and a subsequent deficiency in BER, leading to accumulation of DNA strand breaks and decreased cell viability in response to DNA damage. Taken together, these data demonstrate an important role for USP47 in regulating DNA repair and maintaining genome integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app