Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size.

We investigated the combined effect of low-intensity blood flow restriction and high-intensity resistance training on muscle adaptation. Forty young men (aged 22-32 years) were randomly divided into four groups of ten subjects each: high-intensity resistance training (HI-RT, 75% of one repetition maximum [1-RM]), low-intensity resistance training with blood flow restriction (LI-BFR, 30% 1-RM), combined HI-RT and LI-BFR (CB-RT, twice-weekly LI-BFR and once-weekly HI-RT), and nontraining control (CON). Three training groups performed bench press exercises 3 days/week for 6 weeks. During LI-BFR training sessions, subjects wore pressure cuffs on both arms that were inflated to 100-160 mmHg. Increases in 1-RM were similar in the HI-RT (19.9%) and CB-RT (15.3%) groups and lower in the LI-BFR group (8.7%, p < 0.05). Maximal isometric elbow extension (MVC) increased in the HI-RT (11.3%) and CB-RT (6.6%) groups; there was no change in the LI-BFR group (-0.2%). The cross-sectional area (CSA) of the triceps brachii (TB) increased (p < 0.05) in the HI-RT (8.6%), CB-RT (7.2%), and LI-BFR (4.4%) groups. The change in relative isometric strength (MVC divided by TB CSA) was greater (p < 0.05) in the HI-RT group (3.3%) than in the LI-BFR (-3.5%) and CON (-0.1%) groups. Following training, relative dynamic strength (1-RM divided by TB CSA) was increased (p < 0.05) by 10.5% in the HI-RT group and 6.7% in the CB-RT group. None of the variables in the CON group changed. Our results show that low-intensity resistance training with BFR-induced functional muscle adaptations is improved by combining it with HI-RT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app