JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat.

Plant height (PH) in wheat is a complex trait; its components include spike length (SL) and internode lengths. To precisely analyze the factors affecting PH, two F(8:9) recombinant inbred line (RIL) populations comprising 485 and 229 lines were generated. Crosses were performed between Weimai 8 and Jimai 20 (WJ) and between Weimai 8 and Yannong 19 (WY). Possible genetic relationships between PH and PH components (PHC) were evaluated at the quantitative trait locus (QTL) level. PH and PHC (including SL and internode lengths from the first to the fourth counted from the top, abbreviated as FIITL, SITL, TITL, and FOITL, respectively) were measured in four environments. Individual and the pooled values from four trials were used in the present analysis. A QTL for PH was mapped using data on PH and on PH conditioned by PHC using IciMapping V2.2. All 21 chromosomes in wheat were shown to harbor factors affecting PH in two populations, by both conditional and unconditional QTL mapping methods. At least 11 pairwise congruent QTL were identified in the two populations. In total, ten unconditional QTL and five conditional QTL that could be detected in the conditional analysis only have been verified in no less than three trials in WJ and WY. In addition, three QTL on the short arms of chromosomes 4B, 4D, and 7B were mapped to positions similar to those of the semi-dwarfing genes Rht-B1, Rht-D1 and Rht13, respectively. Conditional QTL mapping analysis in WJ and WY proved that, at the QTL level, SL contributed the least to PH, followed by FIITL; TITL had the strongest influence on PH, followed by SITL and FOITL. The results above indicated that the conditional QTL mapping method can be used to evaluate possible genetic relationships between PH and PHC, and it can efficiently and precisely reveal counteracting QTL, which will enhance the understanding of the genetic basis of PH in wheat. The combination of two related populations with a large/moderate population size made the results authentic and accurate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app