JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Glucose handling by the kidney.

The kidney contributes to glucose homeostasis through processes of gluconeogenesis, glucose filtration, glucose reabsorption, and glucose consumption. Each of these processes can be altered in patients with type-2 diabetes (T2DM), providing potential targets for novel therapies. Recent studies have indicated that the kidney is responsible for up to 20% of all glucose production via gluconeogenesis. In patients with T2DM, overall glucose production increases by as much as 300%, with equal contributions from hepatic and renal sources. This increased production contributes not only to increased fasting glucose in T2DM patients but also to raised postprandial glucose because, in contrast to the liver, glucose ingestion increases renal gluconeogenesis. Under normal circumstances, up to 180 g/day of glucose is filtered by the renal glomerulus and virtually all of it is subsequently reabsorbed in the proximal convoluted tubule. This reabsorption is effected by two sodium-dependent glucose cotransporter (SGLT) proteins. SGLT2, situated in the S1 segment, is a low-affinity high-capacity transporter reabsorbing up to 90% of filtered glucose. SGLT1, situated in the S3 segment, is a high-affinity low-capacity transporter reabsorbing the remaining 10%. In patients with T2DM, renal reabsorptive capacity maladaptively increases from a normal level of 19.5 to 23.3 mmol/l/min. Once glucose has been reabsorbed into the tubular epithelial cells, it diffuses into the interstitium across specific facilitative glucose transporters (GLUTs). GLUT1 and GLUT2 are associated with SGLT1 and SGLT2, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app