JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

The non-centrosymmetric heavy fermion ferromagnet Sm₂Fe₁₂P₇.

We report measurements of the electrical resistivity, magnetization and specific heat on single crystals of the non-centrosymmetric compound Sm2Fe12P7. The magnetization measurements demonstrate that Sm2Fe12P7 exhibits ferromagnetic order below TM, 1 = 6.3 K. The ratio of the effective magnetic moment obtained from a Curie-Weiss fit to the magnetic susceptibility in the paramagnetic state, to the saturation magnetic moment in the ordered state indicates that the ordered state is associated with itinerant electrons. The specific heat measurements reveal an enhanced value for the coefficient of the electronic specific heat γ ∼ 450 mJ mol (-1) K (-2) that is accompanied by a large coefficient A of the T(2) term in the electrical resistivity at low temperatures, suggesting a heavy fermion ground state. Several consecutive magnetic phase transitions indicative of competing magnetic energy scales and the observation of a metamagnetic transition in the magnetization data additionally suggest proximity to a quantum critical point.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app