JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Combined inhibition of PI3K and mTOR exerts synergistic antiproliferative effect, but diminishes differentiative properties of rapamycin in acute myeloid leukemia cells.

A novel strategy has been suggested to enhance rapamycin-based cancer therapy through combining mammalian target of rapamycin (mTOR)-inhibitors with an inhibitor of the phosphatydilinositol 3-kinase PI3K/Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. However, recent study demonstrated the potentiating effect of rapamycin on all-trans-retinoic acid (ATRA)-mediated differentiation of acute myelogenous leukemia (AML) cells, prompting us to investigate the effects of longitudinal inhibition of PI3K/Akt/mTOR signaling pathway on both proliferation and differentiative capacity of AML. In NB4, HL-60, U937 and K562 cell lines, rapamycin exerted minimal antiproliferative effects, and combining PI3K inhibitor LY 294002 and rapamycin inhibited proliferation more than LY 294002 alone. Rapamycin potentiated differentiation of ATRA-treated NB4 cells, but the combination of rapamycin and LY 294002 inhibited the expression of CD11b in both ATRA- and phorbol myristate acetate (PMA)-stimulated cells more than PI3K inhibitor alone. These results demonstrate that, although the combination of PI3K inhibitor and rapamycin is more effective in inhibiting proliferation of AML, the concomitant inhibition of PI3K and mTOR by LY 294002 and rapamycin has more inhibitory effects on ATRA-mediated differentiation than the presence of PI3K-inhibitor alone, and diminishes positive effects of rapamycin on leukemia cell differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app