JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Occurrence of N-nitrosodimethylamine precursors in wastewater treatment plant effluent and their fate during ultrafiltration-reverse osmosis membrane treatment.

The formation of N-nitrosodimethylamine (NDMA) is of major concern among wastewater recycling utilities practicing disinfection with chloramines. The NDMA formation potential (FP) test is a simple and straightforward method to evaluate NDMA precursor concentrations in waters. In this paper we show the NDMA FP results of a range of tertiary wastewater treatment plants that are also the source for production of recycled water using an Ultrafiltration - Reverse Osmosis (UF-RO) membrane process. The results indicate that the NDMA FP of different source waters range from 350 to 1020±20 ng/L. The fate of these NDMA precursors was also studied across the different stages of two Advanced Water Treatment Plants (AWTP) producing recycled water. These results show that more than 98.5±0.5% of NDMA precursors are effectively removed by the Reverse Osmosis (RO) membranes used at the AWTPs. This drastically reduces any potential for re-formation of NDMA after the RO stage even if chloramines may be present (or added) there.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app