COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of L-DOPA on nigral dopamine neurons and local field potential: comparison with apomorphine and muscimol.

L-DOPA is more effective than direct dopamine (DA) agonists in relieving the motor deficits in Parkinson's disease. Using in vivo recording, we compared the effect of l-DOPA and the direct DA agonist apomorphine on DA neurons in rat substantia nigra (SN). L-DOPA (50-100 mg/kg i.v.) decreased the firing rate as well as the variability and slow oscillation (SO) of firing. All effects were blocked by raclopride and mimicked by quinpirole, suggesting that they are mediated through D2-like receptors. Autoreceptor-selective doses of apomorphine (5-20 μg/kg i.v.) also inhibited all three parameters. The magnitude of the inhibition, however, was significantly greater than that induced by L-DOPA. Neither L-DOPA nor apomorphine had a consistent effect on SN local field potentials (LFPs). The GABA agonist muscimol, known to preferentially inhibit SN non-DA neurons, consistently inhibited the SO in both DA cell firing and LFPs. These results suggest that SN LFPs mainly reflect the synaptic potentials in non-DA neurons, and L-DOPA and apomorphine, unlike muscimol, affect DA neurons primarily through DA autoreceptors. DA autoreceptor activation is known to hyperpolarize DA cells by increasing the membrane conductance to K(+). This increase in membrane conductance would shunt synaptic input to DA neurons, thereby decreasing the variability and SO in DA cell firing. The low potency of L-DOPA to inhibit DA cell firing and reduce their responses to synaptic input may partially account for its superior therapeutic efficacy in Parkinson's disease compared with apomorphine and other direct DA agonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app